Welcome to

Trigonometry & Functions

2019-2020

Welcome to Trigonometry and Functions College Preparatory! This course is the study of functions. The goal of this course is to prepare you to take Precalculus or Calculus for Business Majors in college, and success in Precalculus or Business Calculus depends on your knowledge of functions as well as very strong algebra skills.

About Your Summer Assignment

This summer, you will have the opportunity to sharpen your algebra skills and review linear functions. You will be expected to complete the REQUIRED summer assignment. This assignment is on a worksheet. The worksheet will review topics from Algebra 1 and 2 that you have already studied.

This assignment is DUE the first day of classes.

You will have <u>TEST</u> on this material during the first week of classes.

Page 2 TRIGONOMETRY & FUNCTIONS SUMMER WORKSHEET 2014

YOU MUST SHOW YOUR WORK!

SECTION 1 SOLVING LINEAR EQUATIONS

STUDY THE FOLLOWING.

LINEAR EQUATION - A Linear Equation (or first degree equation) is a Polynomial Equation with variables whose exponents are 1.
STEPS TO SOLVE A LINEAR EQUATION WITH ONE VARIABLE
 Remove any fraction by multiplying each term in the equation by the Least Common Denominator (LCD).
2. Use the Distributive Property to remove parentheses.
3. Combine any like terms .
 4. TRANSPOSE (ADDITION PROPERTY) a) Get all the variable terms on one side of the equation. b) Get all the numbers on the other side. REMEMBER – "<u>CHANGE SIDES; CHANGE SIGNS</u>!"
5. Combine any like terms.
6. Use the Division (Multiplication) Property to get the variable "BY ITSELF".
<u>IDENTITY</u> – An Identity is an equation that is true for all real number solutions of the variable. (EXAMPLE: $x + 3 = x + 2 + 1$)
INCONSISTENT EQUATION - An Inconsistent Equation has NO SOLUTION . (EXAMPLE: $x = x + 7$)

In questions 1 to 20 solve the equation. If the equation is an IDENTITY, write "IDENTITY" on the answer line. If the equation has NO SOLUTION, write "NO SOLUTION" on the answer line.

1.x + 115 = -27

1._____

2. 11 - (x - 7) = 0

3. $-\frac{1}{4}x = -8$

4. -15x - 5x = -40

5. 1 - 9x = 100

6. -1/3x + 7 = -5

7. 6x - 2(x - 1) = -14

2. 3._____ 4._____ 5. 6.

7._____

$$8.x + 21 - 2x = 12$$

$$9. x + 25 = 10$$

$$9. \dots \qquad 9. \dots$$

14.____

-

15.
$$-7/8(x - 16) = 70$$

16. $\frac{3}{4}(8x - 4) = -3 + 6x$

17.
$$6(x-1) = 6(x+3)$$
 16._____

18. 2(5x+4) = 10x-6

19. 6x - 12 + 2x = 3 + 8x - 15

17._____

15._____

18._____ + 8r - 15

20. 7(x+1) - 3x = 5 + 4(2x - 1)

19._____

20._____

<u>OVER</u>

 \rightarrow

SECTION 2 SOLVING LINEAR INEQUALITY

STUDY THE FOLLOWING.

STEPS TO SOLVE A LINEAR INEQUALITIES WITH ONE VARIABLE

- 1, Follow the steps to solve a Linear Equation with one variable.
- 2. In the last step (or any other step), if both sides of the inequality are **DIVIDED** (or multiplied) by a **NEGATIVE** NUMBER, the **DIRECTION** of the **ARROW** must be **CHANGED**.
- 3. GRAPH the Linear Inequality on a NUMBER LINE.

STUDY PROBLEM 2 ON PAGE 77 OF TEXTBOOK.

In questions 1 to 7 SOLVE and GRAPH each Linear Inequality.

1. x - 8 > -12

 $2. -12x \ge -6$

£

$$\frac{4}{3} - 6r - 14 > -32$$

3. SOLUTION

 \longrightarrow

 \rightarrow

 \rightarrow

$$4. \quad -\underline{x}_{\underline{4}} \leq -7$$

5. SOLUTION_____

6. -4(3x - 6) 12 > 12

6. SOLUTION _____

7. $\frac{9x+5}{4}$ + 18 < 26

 \leftarrow

7. SOLUTION_____

SECTION 3 RELATIONS AND FUNCTIONS

READ PAGES 128 TO 136 IN THE TEXTBOOK. STUDY ALL EXAMPLES! STUDY THE FOLLOWING DEFINITIONS.

<u>RELATION</u> - A Relation is a **set of ordered pairs**.

<u>THREE WAYS TO DEFINE A RELATION</u> - A Relation may be defined by a SET (TABLE) OF ORDERED PAIRS, a <u>GRAPH</u>, OR an <u>EQUATION</u>.

DOMAIN OF A RELATION - The Domain of a Relation is the set of all x-coordinates in the ordered pairs.

RANGE OF A RELATION - The Range of a relation is the set of all y-coordinates in the ordered pairs.

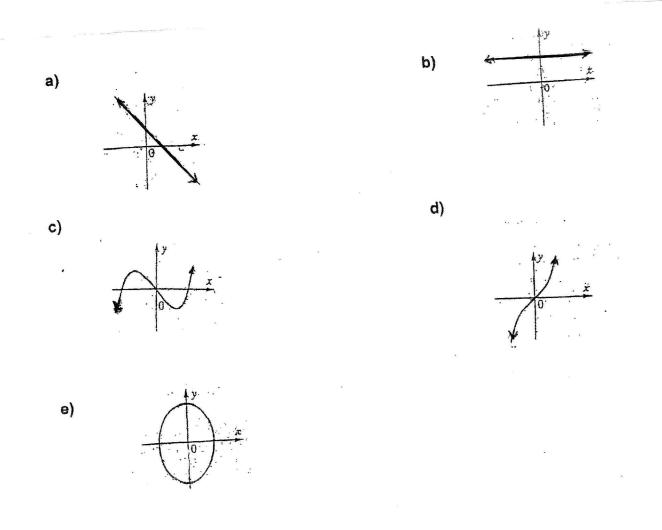
<u>FUNCTION</u> - A Function is an Equation (or rule), which assigns to each value of x exactly <u>ONE</u> value for y.

<u>FUNCTION</u> (second definition) - A Function is a **Set of Ordered Pairs** in which *NO x-coordinate* is repeated.

VERTICAL LINE TEST FOR A FUNCTION - If a VERTICAL LINE *cuts* a *graph* only once, the graph represents a function.

<u>ZEROS OF A FUNCTION</u> – The ZEROS of a function are the *x*-*intercepts* o its graph.

EXAMPLES OF POLYNOMIAL FUNCTIONS


1. LINEAR FUNCTION	FORMULA: $y = my$	x + b GRAPH: slanted line
2. CONSTANT FUNCTION	FORMULA: $y = b$	GRAPH: horizontal line

QUESTIONS

- 1. State the domain and range for the following relations and state whether the relation is a function.
 - a) $\{(0, 4), (1, 5), (2, 6), (3, 7)\}$ b) $\{(2, 4), (4, 8), (8, 16)\}$
 - c) $\{(-1, 2), (-2, 5), (-2, 7)\}$ d) $\{(2, 8), (3, 12), (4, 16)\}$

- c) $\{(-1, 2), (-2, 5), (-2, 7)\}$ d) $\{(2, 8), (3, 12), (4, 16)\}$
 - Page 9

- 2. Write a linear equation for the following functions.
 - a) $\{(0,4), (1,5), (2,6), (3,7)\}$ b) $\{(2,4), (4,8), (8,16)\}$ c) $\{(1,-2), (2,-1), (4,1), (5,2)\}$ d) $\{(1,7), (2,8), (3,9),), (4,10)\}$
- 3. Use the VERTICAL LINE TEST to determine which of the graphs are functions.

SECTION 4 FUNCTIONAL NOTATION

STUDY THE FOLLOWING DEFINITION.

<u>FUNCTIONAL NOTATION</u> - If an equation represents a function, the y in the equation may be replaced by f(x), g(x), h(x), etc. f(x) is read f of x.

STUDY THE FOLLOWING EXAMPLES.

EXAMPLE 1 Evaluate the function for the given value of *X*.

 $f(x) = 2x^2 - 3x + 1$, find f(-3)

SOLUTION $f(x) = 2x^2 - 3x + 1$

 $f(-3) = 2(-3)^2 - 3(-3) + 1$ f(-3) = 2(9) + 9 + 1f(-3) = 28

EXAMPLE 2 Evaluate the function for the given value of X.

g(x) = -4x - 7 find g(a + 1)<u>SOLUTION</u> g(x) = -4x - 7 g(a + 1) = -4(a + 1) - 7 g(a + 1) = -4a - 4 - 7 g(a + 1) = -4a - 4 - 7

QUESTIONS

Evaluate each function for the given value of X.

1.
$$f(x) = 5x - 9$$
 Find
 a. $f(3)$
 b. $f(-3)$
 c. $f(-8)$

 2. $p(x) = 8 - 4x$
 Find
 a. $p(2)$
 b. $p(0)$
 c. $p(-2)$

 3. $h(x) = 3x - 2$
 Find
 a. $h(4)$
 b. $h(-5)$
 c. $h(0)$

 4. $F(x) = 3x - 12$
 Find
 a. $F(-2)$
 b. $F(0)$
 c. $F(a - 1)$

SECTION 5 LINEAR FUNCTIONS AND SLOPE

STUDY THE FOLLOWING DEFINITIONS.

<u>LINEAR FUNCTION</u> - A Linear Function is a **Linear Equation** with two variables whose **exponents** are 1 (understood). A Linear Function may **NOT** have a **variable in the denominator**, a **variable under a radical**, or **two variables** "stuck together". The **Graph** of a **Linear Function** is a **SLANTED** LINE.

QUESTIONS

In questions 1 to 5, state whether the function is a LINEAR FUNCTION.

1. $2x + y = 10$	1
2. $f(x) = 4x^2$	2
3. $-\frac{3}{x} + y = 15$	3
4. $x = y + 8$	4
5. $f(x) = \sqrt{x} + 3$	5

STUDY THE FOLLOWING DEFINITION.

6._

STANDARD FROMULA FOR A LINEAR EQUATION. .

Ax + By = C where A B, and C are integers and **both** A and B may NOT be zero.

STUDY PROBLEM 3 ON PAGE 185.

In questions 6 to 8, write each equation in STANDARD FORM.

6. $y = \frac{1}{2}x - 2$

7._____

8.

8. y = 4x + 7

STUDY THE FOLLOWING.

PROCEDURE TO FIND THE *y-intercept* A *SLANTED* LINE

1. Change the X in the equation to *zero*.

2. **SOLVE** the equation for y.

PROCEDURE TO FIND THE *x-intercept* OF A *SLANTED* LINE

- 1. Change the y in the equation to *zero*.
- 2. **SOLVE** the equation for X.

STUDY PROBLEM 4 ON PAGE 187.

In questions 9 to 13 Find the *x-intercept* and the *y-intercept*.

9 x - 4y = -4

x-intercept_____

- Jan

y-intercept_____

10. 2x + 5y = -10

x-intercept_____

y-intercept_____

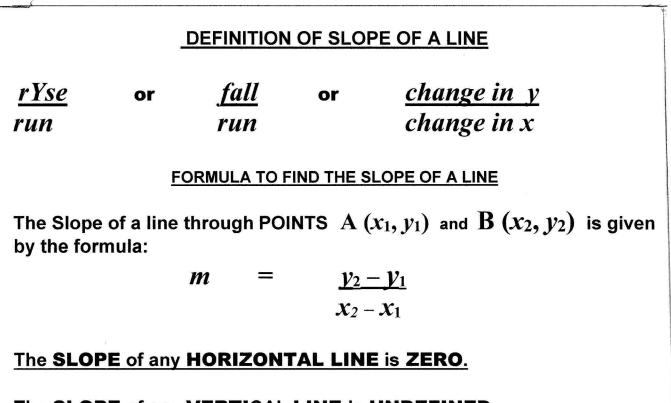
x-intercept_____

y-intercept_____

12. -3x + 2y = 6

x-intercept_____

y-intercept_____


13. y = 2x + 4

x-intercept_____

y-intercept_____

OVER

STUDY THE FOLLOWING.

The **SLOPE** of any **VERTICAL LINE** is **UNDEFINED**. <u>A Vertical Line has **NO** Slope</u>.

STUDY PAGES 165 AND 166.

In questions 14 to 20 find the slope of a line that passes through the given points.

14. points (2, 7) and (-3, 11)

15. points (1, 2) and (2, 3)

14._____

17. points (-5, -7) and (0, 10)

18. points (-2, -1) and (8, -3)

19. points (2, 1) and (4, 1).

20. points (2, 7) and (2, 11).

16._____

17._____

18._____

19._____

20._____

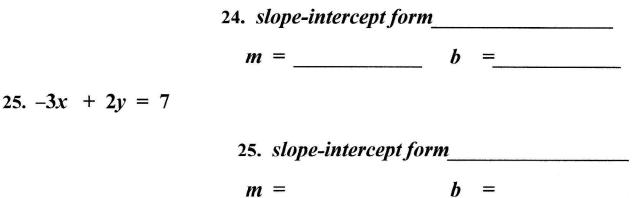
<u>OVER</u>

STUDY THE FOLLOWING.

21.

SLOPE-INTERCEPT FORMULA FOR A "SLANTED" LINE y = mx + bwhere *m* is the *slope* and *b* is the *y-intercept*.

STUDY PROBLEM2 ON PAGE 169.


In questions 21 to 23 write the equation of the line in *slope-intercept* form 21. m = -5 and y-intercept (0, -7)

22. $m = 5$ and <i>y</i> -intercept (0, 12)	
23. $m = -1$ and <i>y</i> -intercept (0, -2)	22
	23.

STUDY PROBLEM 3A ON PAGE 170.

In questions 24 and 25 write the equation of the line in In questions 21 to 23 write the equation of the line in *slope-intercept form* and find the *slope* and *y-intercept*.

24. 5x + y = 4

